- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Baugus, Kenna (2)
-
Bennett, Casey C (2)
-
Bethel, Cindy L (2)
-
Henkel, Zachary (2)
-
Kim, Seongcheol (2)
-
Lee, Jinjae (2)
-
Piatt, Jennifer A (2)
-
Stanojevic, Cedomir (2)
-
Collins, Sawyer (1)
-
Oh, Jiyeong (1)
-
Sabanovic, Selma (1)
-
Yu, Janghoon (1)
-
Šabanović, Selma (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deploying socially assistive robots (SARs) at home, such as robotic companion pets, can be useful for tracking behavioral and health-related changes in humans during lifestyle fluctuations over time, like those experienced during CoVID-19. However, a fundamental problem required when deploying autonomous agents such as SARs in people’s everyday living spaces is understanding how users interact with those robots when not observed by researchers. One way to address that is to utilize novel modeling methods based on the robot’s sensor data, combined with newer types of interaction evaluation such as ecological momentary assessment (EMA), to recognize behavior modalities. This paper presents such a study of human-specific behavior classification based on data collected through EMA and sensors attached onboard a SAR, which was deployed in user homes. Classification was conducted using generative replay models, which attempt to use encoding/decoding methods to emulate how human dreaming is thought to create perturbations of the same experience in order to learn more efficiently from less data. Both multi-class and binary classification were explored for comparison, using several types of generative replay (variational autoencoders, generative adversarial networks, semi-supervised GANs). The highest-performing binary model showed approximately 79% accuracy (AUC 0.83), though multi-class classification across all modalities only attained 33% accuracy (AUC 0.62, F1 0.25), despite various attempts to improve it. The paper here highlights the strengths and weaknesses of using generative replay for modeling during human–robot interaction in the real world and also suggests a number of research paths for future improvement.more » « less
-
Bennett, Casey C; Sabanovic, Selma; Stanojevic, Cedomir; Henkel, Zachary; Kim, Seongcheol; Lee, Jinjae; Baugus, Kenna; Piatt, Jennifer A; Yu, Janghoon; Oh, Jiyeong; et al (, IEEE)
An official website of the United States government
